ALGUNAS FORMULAS
antena cassegrain tipica
Porque será... que al investigar algunos temas FTA es tipico que siempre falte algun dato tecnico ?. Este ha sido uno de los temas del FTA dificil de ordenar como para presentarlo aqui en el Blog "en sociedad", aun sabiendo que El calculo matematico, en algunos ftaperos, se comporta como un inhibidor de las endorfinas -esas sustancias pepticas producidas por el cerebro- haciendonos sentir mal, aumentando el dolor de cabeza y debilitando las respuestas inmunologicas de nuestro organismo. Exagero ?. Estas seguro ?. Los temas tecnicos deberian ser como un faro en medio de la densa niebla del FTA, en vez de resultar un mortal canto de Sirenas. Este es un hobby tecnico, tal como la radio aficion.
Para comenzar es bueno indicar que, segun los que saben, el F/D ideal para una antena con 2 reflectores (como las cassegrain) es 0.8 aunque algunas antenas llegan a un F/D de 0.25. En nuestras estaciones tenemos platos de F/D 0.38 promedio y eso no impide que los convirtamos a cassegrain aunque los platos son mas profundos y en consecuencia menos "ruidosos" y la antena goza de ser directiva. Dicen tambien los que saben que despues de los 4 metros de diametro, se hace dificil el ajuste de este tipo de antenas. Existen en la forma de foco central y offset, tal como conocemos para FTA.
Luego, para el analisis de antenas cassegrain se aplica el concepto de parabola equivalente donde el subreflector y el plato principal son reemplazados por un nuevo paraboloide de igual diametro que el plato principal y de distancia focal M * F. La geometría del sistema Cassegrain clásico emplea un paraboloide cóncavo como el reflector principal y un hiperboloide convexo como el reflector secundario. Uno de los dos focos de la hipérbola es el verdadero punto focal del sistema, y está situado en el centro del alimentador; el otro es un punto focal virtual que está situado en el foco de la parábola. Como resultado, todas las ondas procedentes del punto focal real, y reflejadas en ambas superficies, viajan distancias iguales formando un frente de onda plano que llega al lnb.
imagen del subreflector secundario
Dicho de otro modo, el plato secundario posee un foco en comun con el plato principal. recordemos que una hiperbola tiene dos focos.
La superficie equivalente se define como el lugar geométrico de los puntos de intersección de los rayos paralelos al eje de la antena con la prolongación de los rayos correspondientes que convergen en el foco real.
Evidentemente, esta superficie es un paraboloide de revolución cuya distancia focal es Fe. El resultado de este paraboloide, iluminado desde su foco real con un lnb, es el mismo que el producido en la parabolica original con un lnb en su foco virtual.
VARIABLES EMPLEADAS EN EL CALCULO
Dm = diametro efectivo del plato principal
PP = profundidad del plato principal
Ds = diametro efectivo del sub plato secundario
Fm = distancia focal del plato principal
Fc = distancia entre Foco real y foco equivalente
Fe = distancia focal equivalente del sistema cassegrain
Lr = distancia desde el foco virtual al plato secundario
Lv = distancia del foco real al plato secundario.
fv = angulo entre ejes y el borde del rayo en el foco virtual
fr = angulo entre ejes y el borde del rayo en el foco real
E = excentricidad de la seccion conica
A = medio eje transversal de la seccion conica
B = combinacion de los medio ejes de la seccion conica
Xm = coordenada axial del plato principal
Ym = coordenada del plato principal
Xs = coordenada del sub plato secundario
Ym = coordenada radial del sub plato secundario
Xe = coordenada axial del plato virtual
Ye = coordenada radial del disco virtual
FORMULAS DE CALCULO
CALCULANDO EL F/D del plato principal
F/D = Dm/(16 * PP)
CALCULANDO LA DISTANCIA FOCAL
Fm = Dm * ( F/D)
CALCULANDO EL ANGULO (fi v) fv
Fv = ARCTAN [ (Dm / 2) / (Fm – PP) ]
CALCULANDO EL ANGULO (fi r) fr
(1 / TAN fv) + (1 / TAN fr) = 2 * (Fc / Ds)
(1 / TAN fr) = (2 * (Fc / Ds) ) - (1 / TAN fv)
fr = ARCTAN(1 / ((2 * (Fc / Ds)) - (1 / TAN fv) ) )
CALCULANDO LA DISTANCIA Lv
½ = 0.50
1 - [ SIN ½ * (fv - fr) / SIN ½ * (fv + fr) ] = 2 * (Lv / Fc)
Lv= ((1 - [ SIN ½ * (fv - fr) / SIN ½ * (fv + fr) ]) / 2) * fc
CALCULANDO LA EXENTRICIDAD ‘E’
E = SIN ½ * (fv + fr) / SIN ½ * (fv - fr)
CALCULANDO EL VALOR ‘A’
A = Fc / (2 * E)
CALCULANDO EL VALOR ‘B’
B = A * SQRT(E ^ 2 – 1)
CALCULANDO LA CURVA DEL PLATO PRINCIPAL (PARABOLICA)
Xm = (Ym^ 2) / (4 * Fm)
luego repetir diferentes valores de Ym para obtener los de Xm.
CALCULANDO LA CURVA DEL SUB PLATO (HIPERBOLICA)
Xs = A * [ SQRT(1 + (Ys / B) ^ 2) – 1 ]
luego repetir para diferentes valores de Ys para obtener los de Xs.
CALCULANDO LA LONGITUD FOCAL EQUIVALENTE Fe
Fe / Fm = (E + 1) / (E –1)
Fe = ((E + 1) / (E –1)) * Fm
CALCULANDO LA CURVA DEL PLATO VIRTUAL (PARABOLICA)
Xe = (Ye ^ 2) / (4 * Fe)
luego repetir para diferentes valores de Ye para obtener los de Xe.
OTRAS FORMULAS CONOCIDAS
distancia del Foci del plato secundario
Fc = (Ds/2) * ((COTAN fr + COTAN fv))
diametro optimo del subreflector
Ds = K * Lambda * Fm
donde
K = constante del ancho del haz del alimentador
K = (2 * Dsombra/Lambda) * SEN(Fr)
Lambda = longitud de onda de recepcion
Dsombra= diametro de la sombra proyectada por el alimentador primario (donde esta el lnb)
tambien Ds = (K * Lambda * Fm * SEN(Fv)) / SEN(Fv + Fr)
magnificacion del hiperboloide
M = (Dm / 4 * Fm) * COTAN(Fr/2)
excentricidad del hiperboloide
e = (M + 1) / (M - 1)
calculo de Lv
Lv = Fc /2 * (e-1 / e)
La parabola equivalente tiene el mismo diametro Dm, pero su distancia focal es Fe=M * Fm
TABLA DE FUNCIONES TRIGONOMETRICAS
(continuará)
Saludos Cordiales
FTApinamar